Yüklüyor…

Geotechnical Modelling.

This book enables practising engineers to make informed decisions concerning soil model boundary conditions and the choice of elements in Finite Element models. Ideal for MSc and MEng students and for use on CPD courses.

Detaylı Bibliyografya
Yazar: Muir Wood, David
Materyal Türü: e-Kitap
Dil:İngilizce
Baskı/Yayın Bilgisi: Milton : Taylor & Francis Group, 2004.
Edisyon:1st ed.
Seri Bilgileri:Applied Geotechnics Series
Konular:
Online Erişim:Full-text access
İçindekiler:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • 1 Introduction to modelling
  • 1.1 Introduction
  • 1.2 Empirical models
  • 1.2.1 Vane strength correction
  • 1.2.2 Consolidation settlement
  • 1.2.3 Cone penetration test and settlement of footings on sand
  • 1.2.4 Pressuremeter
  • 1.3 Theoretical models
  • 1.3.1 Steady seepage
  • 1.4 Numerical modelling
  • 1.5 Constitutive modelling
  • 1.6 Physical models
  • 1.6.1 Physical models: full-scale
  • 1.6.2 Physical models: small-scale
  • 1.7 Geological model
  • 1.8 Classification model
  • 1.9 Conclusion
  • 2 Characteristics of soil behaviour
  • 2.1 Introduction
  • 2.2 Particle-continuum duality
  • 2.3 Laboratory element testing
  • 2.4 Stress and strain variables
  • 2.5 Stiffness
  • 2.5.1 Nonlinearity: secant and tangent stiffness
  • 2.5.2 Stiffness and strain measurement
  • 2.5.3 Stiffness and history: stress response envelopes
  • 2.5.4 Anisotropy of stiffness
  • 2.6 Dilatancy
  • 2.6.1 Critical states: state variable
  • 2.6.2 Pore pressure parameter
  • 2.7 Strength
  • 3 Constitutive modelling
  • 3.1 Introduction
  • 3.2 Elastic models
  • 3.2.1 Conventional drained triaxial compression test
  • 3.2.2 Conventional undrained triaxial compression test
  • 3.2.3 Measurement of elastic parameters with different devices
  • 3.2.4 Anisotropy
  • 3.2.5 Nonlinearity
  • 3.2.6 Heterogeneity
  • 3.3 Elastic-perfectly plastic models
  • 3.3.1 General elastic-perfectly plastic model
  • 3.3.2 A digression: collapse of portal frame
  • 3.3.3 General elastic-perfectly plastic model (continued)
  • 3.3.4 Elastic-perfectly plastic Mohr-Coulomb model
  • 3.4 Elastic-hardening plastic models
  • 3.4.1 Extended Mohr-Coulomb model
  • 3.4.2 Cam clay
  • 3.5 Modelling non-monotonic loading
  • 3.6 Modelling cementation and structure
  • 3.7 Modelling rate effects
  • 3.8 Design of programmes of laboratory tests.
  • 3.9 Selection of soil parameters: calibration of models
  • 4 Numerical modelling
  • 4.1 Introduction
  • 4.2 Field problems
  • 4.2.1 One-dimensional problem
  • 4.2.2 Two-dimensional problem
  • 4.3 One-dimensional finite elements
  • 4.4 Two-dimensional finite elements
  • 4.4.1 Example: Constant strain triangle
  • 4.4.2 Example: Linear strain triangle
  • 4.4.3 Quadrilateral elements
  • 4.4.4 Comparison of elements
  • 4.5 Integration-Gauss points
  • 4.5.1 Reduced integration
  • 4.6 Nodal forces and external loads
  • 4.7 Dynamic analysis
  • 4.8 Finite differences
  • 4.9 Solution schemes
  • 4.10 Conduct of numerical modelling
  • 4.10.1 Verification: Is the program doing what it claims to be doing?
  • 4.10.2 Are we getting the answers that we think we are getting?
  • 4.10.3 Validation: Are we getting the answers that we need?
  • 4.10.4 Exercise in numerical modelling: FLAG analysis of footing on Mohr-Coulomb soil
  • 4.11 Closure
  • 5 Physical modelling
  • 5.1 Introduction
  • 5.2 Dimensional analysis
  • 5.2.1 Slope in cohesive soil
  • 5.2.2 Fall-cone
  • 5.2.3 Consolidation
  • 5.2.4 Fluid drag
  • 5.2.5 Settlement of a footing
  • 5.2.6 Bearing capacity of a footing
  • 5.2.7 Soil nonlinearity
  • 5.3 Scaling laws revisited
  • 5.3.1 Length
  • 5.3.2 Density
  • 5.3.3 Acceleration
  • 5.3.4 Stiffness
  • 5.3.5 Strain
  • 5.3.6 Displacement
  • 5.3.7 Permeability
  • 5.3.8 Hydraulic gradient
  • 5.3.9 Time scales
  • 5.3.10 Shear wave velocity
  • 5.4 Soil-structure interaction
  • 5.4.1 Footing
  • 5.4.2 Pile under lateral loading
  • 5.4.3 Flexible retaining wall
  • 5.4.4 Buried flexible culvert
  • 5.4.5 Piles under axial load
  • 5.4.6 Dynamic soil-structure interaction
  • 5.5 Single gravity modelling
  • 6 Centrifuge modelling
  • 6.1 Introduction
  • 6.2 Mechanics of centrifuge modelling
  • 6.3 Centrifuges
  • 6.4 Model preparation
  • 6.5 Geotechnical processes.
  • 6.6 Pore fluid
  • 6.7 Site investigation
  • 6.8 Instrumentation
  • 6.9 Modelling and testing
  • 6.10 Closure
  • 7 Theoretical modelling
  • 7.1 Introduction
  • 7.2 Elastic stress distributions
  • 7.3 Plastic failure analysis
  • 7.3.1 Bound theorems
  • 7.3.2 Structural example
  • 7.3.3 Continuum problems-Mohr's circle
  • 7.3.4 Bearing capacity of cohesive soil
  • 7.3.5 Wall retaining cohesive soil
  • 7.3.6 Bearing capacity of frictional soil
  • 7.4 One-dimensional consolidation
  • 7.4.1 Parabolic isochrones
  • 7.4.2 General power law approximate solution
  • 7.4.3 Pore pressures for stability analysis of embankment on soft clay
  • 7.5 Macroelement models
  • 7.5.1 Box model
  • 7.5.2 Wall model
  • 7.5.3 Footing model
  • 7.5.4 Extended Newmark sliding block model
  • 7.6 Closure
  • 8 Soil-structure interaction
  • 8.1 Introduction
  • 8.2 Elastic analyses
  • 8.2.1 Beam on elastic foundation
  • 8.2.2 Pile under lateral loading
  • 8.2.3 Pile under axial loading
  • 8.2.4 Piled raft
  • 8.3 Serviceability calculations
  • 8.4 Relative foundation stiffness
  • 8.5 Downdrag on pile
  • 8.6 Settlement reducing piles
  • 8.7 Flexible retaining wall
  • 8.8 Tunnel lining
  • 8.9 Pile in displacing ground
  • 8.10 Integral bridge abutment
  • 8.11 Closure
  • 9 Envoi
  • Bibliography
  • Index.