Loading…
Introduction to Refractories for Iron- and Steelmaking.
Main Author: | |
---|---|
Other Authors: | |
Format: | e-Book |
Language: | English |
Published: |
Cham :
Springer International Publishing AG,
2020.
|
Edition: | 1st ed. |
Subjects: | |
Online Access: | Full-text access View in OPAC |
Table of Contents:
- Intro
- Preface
- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Chapter 7
- Chapter 8
- Chapter 9
- Chapter 10
- Chapter 11
- Chapter 12
- Acknowledgements
- Why This Book?
- Contents
- About the Authors
- Chapter 1: Refractories for Iron and Steel Plant
- 1.1 Introduction
- 1.1.1 Scenario of World Steel Production and Refractory Demand
- 1.1.2 Modern Refractory Practices
- 1.2 Definition and Classification of Refractories
- 1.3 Refractory Design Parameters and Testing
- 1.3.1 Density and Porosity
- 1.3.2 Permanent Linear Change
- 1.3.3 Crushing Strength
- 1.3.4 High-Temperature Deformation Under Compressive Load
- 1.3.5 Deformation in Bending
- 1.3.6 Elastic Modulus
- 1.3.7 Mechanical Stress Assisted Crack Propagation
- 1.3.8 Thermal Stress Assisted Crack Propagation
- 1.3.9 Thermal Conductivity
- 1.3.10 Thermal Expansion Behaviour
- 1.3.11 Thermal Stress and Shock
- 1.3.12 Wear Behaviour
- 1.3.13 Difference Between Corrosion, Erosion and Abrasion
- 1.4 Shaped Refractories
- 1.4.1 Silica Refractories
- 1.4.1.1 Raw Materials and Processing
- 1.4.1.2 Effect of Impurities on Eutectic Temperature
- 1.4.1.3 RUL vis-a-vis PCE
- 1.4.2 Alumina-Silicate Refractories
- 1.4.2.1 Fireclay Refractories
- 1.4.2.2 Sillimanite Group of Raw Materials
- Andalusite
- Kyanite
- 1.4.2.3 Mullite and Andalusite
- 1.4.3 High-Alumina Refractories
- 1.4.3.1 Forms of Aluminium Hydroxides
- 1.4.3.2 Bauxite Natural Source of Alumina
- 1.4.3.3 Synthetic Alumina
- 1.4.3.4 Sintered Alumina
- 1.4.3.5 White Fused Alumina and Tabular Alumina
- 1.4.3.6 Corrosion of High-Alumina Refractories in the Presence of FeO and Fe2O3
- 1.4.4 Magnesite Refractories
- 1.4.4.1 Dead Burned Magnesium Oxide
- 1.4.4.2 Seawater Magnesia
- 1.4.4.3 Fused Magnesia
- 1.4.4.4 Characteristics of Magnesite bricks.
- 1.4.4.5 Effect of Impurities
- 1.4.4.6 Effect of MgO Crystallite Size
- 1.4.4.7 Poor Thermal Shock Resistance of MgO Refractory
- 1.4.5 Dolomite Refractory
- 1.4.5.1 Direct-Bonded Doloma Bricks (Fired)
- 1.4.5.2 Chemically Bonded Dolomite Bricks
- 1.4.5.3 Direct-Bonded Dolomite Bricks with Improved Thermal Shock Resistance
- 1.4.5.4 Dolomite Brick Selection Criteria
- 1.4.5.5 Specification of Dolomite Bricks
- 1.4.6 MgO-C Refractories
- 1.4.6.1 Production Technology of Fired Carbon-Bonded Magnesia Bricks
- 1.4.6.2 Production Technology of Carbon Bond Impregnated Magnesia Bricks
- 1.4.6.3 Production Technology of Resin-Bonded MgO-C Bricks
- 1.4.7 MgO-Cr2O3 Refractories
- 1.4.7.1 Chrome Ore
- 1.4.7.2 Bond Aggregate System: Synthetic and Rebonded
- 1.4.7.3 Different Types of Magnesia-Chrome Bricks Based on Bonding System
- Chemically Bonded
- Silicate Bonded
- Direct Bonded
- Rebonded
- Semi-rebonded
- 1.4.7.4 Effect of Fused Magnesia-Chromite Quality on Rebonded Bricks
- 1.4.7.5 Competitive Features of Direct-Bonded, Rebonded and Semi-rebonded Bricks
- 1.4.7.6 Corrosion of Magnesia:Chrome Bricks
- 1.4.8 Spinel Refractories
- 1.4.8.1 In Situ and Preformed Spinel
- 1.4.8.2 Features of Spinel as a Superior Refractory Material
- 1.4.9 Silicon Carbide Refractories
- 1.4.9.1 Oxidation Reactions of SiC
- 1.4.9.2 Oxidation of SiC in the Presence of Water Vapor
- 1.4.9.3 Oxidation of SiC in CO Atmosphere
- 1.4.9.4 Oxidation of SiC in the Presence of Alkali (Na2O + K2O)
- 1.4.9.5 Damage of SiC Refractories
- 1.4.10 Zircon and Zirconia Refractories
- 1.4.10.1 ZrO2
- 1.4.10.2 Stabilized Zirconia
- 1.5 Monolithic Refractories
- 1.5.1 Types of Monolithic Refractories
- 1.5.2 Castables
- 1.5.2.1 Conventional Castable
- 1.5.2.2 Low-Cement and Ultra-Low-Cement Castable
- 1.5.2.3 Castable Manufacturing Process.
- 1.5.2.4 Testing of Castables in Laboratory
- 1.5.3 Calcium Aluminate Cement (CAC)
- 1.5.3.1 Hydration of Calcium Aluminate Cement
- 1.5.4 Spinel-Containing Castable
- 1.5.4.1 Preformed Spinel-Containing Castable
- 1.5.4.2 In Situ Spinel-Containing Castables
- 1.5.5 Ramming Masses and Plastic Monolithics
- 1.5.5.1 Ramming Mixes
- 1.5.5.2 Plastic Mass
- 1.5.6 Application Methodology
- 1.5.6.1 Installation of Castables
- 1.5.6.2 Installation of Plastics and Ramming Mixes
- 1.6 Corrosion of Refractory
- 1.6.1 Basic Corrosion Concept
- 1.6.2 Slag Viscosity and Penetration
- 1.6.3 Slag-Refractory Interaction
- 1.6.4 Primary and Secondary Slags
- 1.6.4.1 Iron-Making Slag (BF Slag)
- 1.6.4.2 Primary Steel-Making Slag
- BOF Slag
- EAF Slag
- 1.6.4.3 Secondary Steel-Making Slag (Ladle Furnace Slag)
- 1.6.5 Effective Use of Iron/Steel slags
- References
- Chapter 2: Iron- and Steel-Making Process
- 2.1 Introduction
- 2.2 Overview on Blast Furnace Iron Making
- 2.2.1 Basic Construction of Blast Furnace
- 2.2.2 Blast Furnace Reactions to Produce Metallic Iron
- 2.2.3 Gaseous or Indirect Reduction of Iron Oxides
- 2.2.4 Direct Reduction of Iron Oxide by Solid Carbon
- 2.2.5 Other Reactions in Blast Furnace
- 2.2.5.1 Reduction of MnO
- 2.2.5.2 Reduction of SiO2
- 2.2.5.3 Removal of Sulphur
- 2.2.5.4 Reduction of P2O5
- 2.2.5.5 Slag Formation
- 2.2.6 Cooling System
- 2.2.6.1 Cooling Plates
- 2.2.6.2 Cigar Coolers
- 2.2.6.3 Stave Coolers
- 2.2.6.4 Fourth-generation SiC Refractory for Cooling Stave
- 2.2.7 Cast House Practice
- 2.2.7.1 Tap Hole Practice
- 2.2.7.2 Tap Hole Clay Mix
- 2.2.7.3 Tap Hole Mixes Design
- 2.2.8 Drainage of Hot Metal Through Trough and Runners
- 2.3 Modern Steel-Making Practices
- 2.3.1 Bessemer Process
- 2.3.2 Open-Hearth Process
- 2.3.3 Primary Refining Process Through BOF.
- 2.3.3.1 Input-Output in LD Converter
- 2.3.3.2 Reactions in BOF
- 2.3.3.3 Reaction Equilibrium in BOF Steel Making
- 2.3.3.4 Bottom-Stirring Practice in LD Converter
- 2.3.4 Secondary Refining Process
- 2.4 Type of Processes and Special Consideration
- 2.4.1 Ladle Furnaces
- 2.4.1.1 Refining of Liquid Steel
- 2.4.1.2 Steel Alloying
- 2.4.1.3 Stirring Liquid Bath in Ladles
- 2.4.1.4 Chilling Effect on Alloy Addition
- 2.4.1.5 Preheating of Steel Ladle
- 2.4.2 RH-Degasser
- 2.4.2.1 Basics of RH Process
- 2.4.2.2 Multifunctional Burner (MFB) in RH-OB
- 2.4.2.3 Ultra-Low Carbon Steel in RH Vessel
- 2.4.3 CAS-OB
- 2.4.3.1 Basics of CAS-OB
- 2.4.3.2 CAS-OB Reheating
- 2.4.3.3 Refractory Erosion and Snorkel Life
- References
- Chapter 3: Blast Furnace Refractory
- 3.1 Introduction
- 3.2 Demand on Refractory Lining
- 3.2.1 Refractory Practice in Stack
- 3.2.2 Refractory Practice in Bosh and Belly
- 3.2.3 Refractory Practice in TJ Area
- 3.2.3.1 Use of Ramming Masses in Blast Furnace Lining
- 3.2.4 Refractory Practices in Hearth
- 3.2.4.1 Source and Quality of Graphite
- 3.2.4.2 Hot-Pressed Carbon
- 3.2.4.3 Thermal Conductivity
- 3.2.4.4 Corrosion Resistance
- 3.3 Refractory Maintenance Practice
- 3.3.1 Robotic Stack Gunning
- 3.3.1.1 Arrangements for Robotic Gunning
- 3.3.1.2 Blast Furnace Wall Cleaning
- 3.3.2 Grouting Refractory
- 3.3.2.1 Decisions on Grouting in Stack and Bosh
- 3.3.2.2 Preparation for Grouting
- 3.3.2.3 Decision on Grouting in Hearth Side Wall
- 3.3.3 TiO2 Injection [18]
- 3.4 Consideration to Prolong Blast Furnace Campaign
- 3.4.1 Designing Features
- 3.4.1.1 Design on Thermal Gradient
- 3.4.1.2 Heat Conduction in a Multilayer Refractory Lining in Straight Wall
- 3.4.1.3 Heat Flux Calculation through Circular Wall
- 3.4.1.4 Design on Thermo-Mechanical Stress.
- 3.4.1.5 Thermal Expansion of the Lining and Shell
- 3.4.2 Quality Upgradation
- 3.4.2.1 Upgradation of Carbon Refractory in Hearth Lining
- 3.4.2.2 Micropore and Super Micropore Carbon
- 3.4.3 Monitoring of Refractory Condition
- 3.4.3.1 Use of Duel Thermocouple
- 3.4.3.2 Acoustoultrasonicecho Technique
- 3.4.3.3 Anomalies in Defining Refractory Lining Thickness
- 3.4.3.4 Design of Ceramic cup
- 3.4.3.5 Advantages of Using Ceramic Cup
- Cracking Mechanism
- 3.4.4 Thermal Solution
- 3.4.4.1 Formation of ``Freezing Layer
- 3.4.5 Bottom Pad Cooling Layer
- 3.4.6 Blast Furnace Repair Processes
- 3.4.6.1 Relining Process
- 3.4.6.2 Expansion of Blast Furnace Inner Volume
- 3.4.6.3 Relining Activity
- 3.4.6.4 Dismantling of Old Refractory
- 3.4.6.5 Lining of New Refractory
- 3.4.6.6 Brick Lining in Stack
- 3.4.7 Change of Stack Refractory
- 3.4.7.1 Gas-Free Atmosphere
- 3.4.7.2 Refractory Concrete for Capping
- 3.5 Cast House Refractory
- 3.5.1 Tap Hole Design
- 3.5.2 Tap Hole Clay and its Performances
- 3.5.2.1 Wear Mechanism of Tap Hole Clay
- 3.5.2.2 Moisture and Volatile Matter
- 3.5.2.3 Checking the Properties of Tap Hole Clay to Ensure Performance
- 3.5.3 Hot Metal Trough and its Design
- 3.5.3.1 Pooling Trough
- 3.5.3.2 Semi-Pooling Trough
- 3.5.3.3 Non-pooling Trough
- 3.5.4 Refractory for Hot Metal Trough and Iron Runners
- 3.5.5 Wear Mechanism
- 3.5.6 Modern Refractory Practices
- 3.5.6.1 Use of Antioxidants
- 3.5.6.2 Effect of Spinel Content on Refractory Castables
- 3.5.6.3 Effect of Silicon Carbide
- 3.5.6.4 Use of SiO2-Sol as a Binder
- 3.5.6.5 High Performance Backup Lining
- References
- Chapter 4: Hot Stove and Hot Air Carrying System
- 4.1 Introduction
- 4.2 Design of Hot Blast Stove
- 4.3 Refractory Lining Design
- 4.3.1 High Alumina Refractory in Hot Blast Stove.
- 4.3.2 Silica Refractory in Hot Blast Stoves.