Loading…

Introduction to Refractories for Iron- and Steelmaking.

Bibliographic Details
Main Author: Biswas, Subir
Other Authors: Sarkar, Debasish
Format: e-Book
Language:English
Published: Cham : Springer International Publishing AG, 2020.
Edition:1st ed.
Subjects:
Online Access:Full-text access
View in OPAC
Table of Contents:
  • Intro
  • Preface
  • Chapter 1
  • Chapter 2
  • Chapter 3
  • Chapter 4
  • Chapter 5
  • Chapter 6
  • Chapter 7
  • Chapter 8
  • Chapter 9
  • Chapter 10
  • Chapter 11
  • Chapter 12
  • Acknowledgements
  • Why This Book?
  • Contents
  • About the Authors
  • Chapter 1: Refractories for Iron and Steel Plant
  • 1.1 Introduction
  • 1.1.1 Scenario of World Steel Production and Refractory Demand
  • 1.1.2 Modern Refractory Practices
  • 1.2 Definition and Classification of Refractories
  • 1.3 Refractory Design Parameters and Testing
  • 1.3.1 Density and Porosity
  • 1.3.2 Permanent Linear Change
  • 1.3.3 Crushing Strength
  • 1.3.4 High-Temperature Deformation Under Compressive Load
  • 1.3.5 Deformation in Bending
  • 1.3.6 Elastic Modulus
  • 1.3.7 Mechanical Stress Assisted Crack Propagation
  • 1.3.8 Thermal Stress Assisted Crack Propagation
  • 1.3.9 Thermal Conductivity
  • 1.3.10 Thermal Expansion Behaviour
  • 1.3.11 Thermal Stress and Shock
  • 1.3.12 Wear Behaviour
  • 1.3.13 Difference Between Corrosion, Erosion and Abrasion
  • 1.4 Shaped Refractories
  • 1.4.1 Silica Refractories
  • 1.4.1.1 Raw Materials and Processing
  • 1.4.1.2 Effect of Impurities on Eutectic Temperature
  • 1.4.1.3 RUL vis-a-vis PCE
  • 1.4.2 Alumina-Silicate Refractories
  • 1.4.2.1 Fireclay Refractories
  • 1.4.2.2 Sillimanite Group of Raw Materials
  • Andalusite
  • Kyanite
  • 1.4.2.3 Mullite and Andalusite
  • 1.4.3 High-Alumina Refractories
  • 1.4.3.1 Forms of Aluminium Hydroxides
  • 1.4.3.2 Bauxite Natural Source of Alumina
  • 1.4.3.3 Synthetic Alumina
  • 1.4.3.4 Sintered Alumina
  • 1.4.3.5 White Fused Alumina and Tabular Alumina
  • 1.4.3.6 Corrosion of High-Alumina Refractories in the Presence of FeO and Fe2O3
  • 1.4.4 Magnesite Refractories
  • 1.4.4.1 Dead Burned Magnesium Oxide
  • 1.4.4.2 Seawater Magnesia
  • 1.4.4.3 Fused Magnesia
  • 1.4.4.4 Characteristics of Magnesite bricks.
  • 1.4.4.5 Effect of Impurities
  • 1.4.4.6 Effect of MgO Crystallite Size
  • 1.4.4.7 Poor Thermal Shock Resistance of MgO Refractory
  • 1.4.5 Dolomite Refractory
  • 1.4.5.1 Direct-Bonded Doloma Bricks (Fired)
  • 1.4.5.2 Chemically Bonded Dolomite Bricks
  • 1.4.5.3 Direct-Bonded Dolomite Bricks with Improved Thermal Shock Resistance
  • 1.4.5.4 Dolomite Brick Selection Criteria
  • 1.4.5.5 Specification of Dolomite Bricks
  • 1.4.6 MgO-C Refractories
  • 1.4.6.1 Production Technology of Fired Carbon-Bonded Magnesia Bricks
  • 1.4.6.2 Production Technology of Carbon Bond Impregnated Magnesia Bricks
  • 1.4.6.3 Production Technology of Resin-Bonded MgO-C Bricks
  • 1.4.7 MgO-Cr2O3 Refractories
  • 1.4.7.1 Chrome Ore
  • 1.4.7.2 Bond Aggregate System: Synthetic and Rebonded
  • 1.4.7.3 Different Types of Magnesia-Chrome Bricks Based on Bonding System
  • Chemically Bonded
  • Silicate Bonded
  • Direct Bonded
  • Rebonded
  • Semi-rebonded
  • 1.4.7.4 Effect of Fused Magnesia-Chromite Quality on Rebonded Bricks
  • 1.4.7.5 Competitive Features of Direct-Bonded, Rebonded and Semi-rebonded Bricks
  • 1.4.7.6 Corrosion of Magnesia:Chrome Bricks
  • 1.4.8 Spinel Refractories
  • 1.4.8.1 In Situ and Preformed Spinel
  • 1.4.8.2 Features of Spinel as a Superior Refractory Material
  • 1.4.9 Silicon Carbide Refractories
  • 1.4.9.1 Oxidation Reactions of SiC
  • 1.4.9.2 Oxidation of SiC in the Presence of Water Vapor
  • 1.4.9.3 Oxidation of SiC in CO Atmosphere
  • 1.4.9.4 Oxidation of SiC in the Presence of Alkali (Na2O + K2O)
  • 1.4.9.5 Damage of SiC Refractories
  • 1.4.10 Zircon and Zirconia Refractories
  • 1.4.10.1 ZrO2
  • 1.4.10.2 Stabilized Zirconia
  • 1.5 Monolithic Refractories
  • 1.5.1 Types of Monolithic Refractories
  • 1.5.2 Castables
  • 1.5.2.1 Conventional Castable
  • 1.5.2.2 Low-Cement and Ultra-Low-Cement Castable
  • 1.5.2.3 Castable Manufacturing Process.
  • 1.5.2.4 Testing of Castables in Laboratory
  • 1.5.3 Calcium Aluminate Cement (CAC)
  • 1.5.3.1 Hydration of Calcium Aluminate Cement
  • 1.5.4 Spinel-Containing Castable
  • 1.5.4.1 Preformed Spinel-Containing Castable
  • 1.5.4.2 In Situ Spinel-Containing Castables
  • 1.5.5 Ramming Masses and Plastic Monolithics
  • 1.5.5.1 Ramming Mixes
  • 1.5.5.2 Plastic Mass
  • 1.5.6 Application Methodology
  • 1.5.6.1 Installation of Castables
  • 1.5.6.2 Installation of Plastics and Ramming Mixes
  • 1.6 Corrosion of Refractory
  • 1.6.1 Basic Corrosion Concept
  • 1.6.2 Slag Viscosity and Penetration
  • 1.6.3 Slag-Refractory Interaction
  • 1.6.4 Primary and Secondary Slags
  • 1.6.4.1 Iron-Making Slag (BF Slag)
  • 1.6.4.2 Primary Steel-Making Slag
  • BOF Slag
  • EAF Slag
  • 1.6.4.3 Secondary Steel-Making Slag (Ladle Furnace Slag)
  • 1.6.5 Effective Use of Iron/Steel slags
  • References
  • Chapter 2: Iron- and Steel-Making Process
  • 2.1 Introduction
  • 2.2 Overview on Blast Furnace Iron Making
  • 2.2.1 Basic Construction of Blast Furnace
  • 2.2.2 Blast Furnace Reactions to Produce Metallic Iron
  • 2.2.3 Gaseous or Indirect Reduction of Iron Oxides
  • 2.2.4 Direct Reduction of Iron Oxide by Solid Carbon
  • 2.2.5 Other Reactions in Blast Furnace
  • 2.2.5.1 Reduction of MnO
  • 2.2.5.2 Reduction of SiO2
  • 2.2.5.3 Removal of Sulphur
  • 2.2.5.4 Reduction of P2O5
  • 2.2.5.5 Slag Formation
  • 2.2.6 Cooling System
  • 2.2.6.1 Cooling Plates
  • 2.2.6.2 Cigar Coolers
  • 2.2.6.3 Stave Coolers
  • 2.2.6.4 Fourth-generation SiC Refractory for Cooling Stave
  • 2.2.7 Cast House Practice
  • 2.2.7.1 Tap Hole Practice
  • 2.2.7.2 Tap Hole Clay Mix
  • 2.2.7.3 Tap Hole Mixes Design
  • 2.2.8 Drainage of Hot Metal Through Trough and Runners
  • 2.3 Modern Steel-Making Practices
  • 2.3.1 Bessemer Process
  • 2.3.2 Open-Hearth Process
  • 2.3.3 Primary Refining Process Through BOF.
  • 2.3.3.1 Input-Output in LD Converter
  • 2.3.3.2 Reactions in BOF
  • 2.3.3.3 Reaction Equilibrium in BOF Steel Making
  • 2.3.3.4 Bottom-Stirring Practice in LD Converter
  • 2.3.4 Secondary Refining Process
  • 2.4 Type of Processes and Special Consideration
  • 2.4.1 Ladle Furnaces
  • 2.4.1.1 Refining of Liquid Steel
  • 2.4.1.2 Steel Alloying
  • 2.4.1.3 Stirring Liquid Bath in Ladles
  • 2.4.1.4 Chilling Effect on Alloy Addition
  • 2.4.1.5 Preheating of Steel Ladle
  • 2.4.2 RH-Degasser
  • 2.4.2.1 Basics of RH Process
  • 2.4.2.2 Multifunctional Burner (MFB) in RH-OB
  • 2.4.2.3 Ultra-Low Carbon Steel in RH Vessel
  • 2.4.3 CAS-OB
  • 2.4.3.1 Basics of CAS-OB
  • 2.4.3.2 CAS-OB Reheating
  • 2.4.3.3 Refractory Erosion and Snorkel Life
  • References
  • Chapter 3: Blast Furnace Refractory
  • 3.1 Introduction
  • 3.2 Demand on Refractory Lining
  • 3.2.1 Refractory Practice in Stack
  • 3.2.2 Refractory Practice in Bosh and Belly
  • 3.2.3 Refractory Practice in TJ Area
  • 3.2.3.1 Use of Ramming Masses in Blast Furnace Lining
  • 3.2.4 Refractory Practices in Hearth
  • 3.2.4.1 Source and Quality of Graphite
  • 3.2.4.2 Hot-Pressed Carbon
  • 3.2.4.3 Thermal Conductivity
  • 3.2.4.4 Corrosion Resistance
  • 3.3 Refractory Maintenance Practice
  • 3.3.1 Robotic Stack Gunning
  • 3.3.1.1 Arrangements for Robotic Gunning
  • 3.3.1.2 Blast Furnace Wall Cleaning
  • 3.3.2 Grouting Refractory
  • 3.3.2.1 Decisions on Grouting in Stack and Bosh
  • 3.3.2.2 Preparation for Grouting
  • 3.3.2.3 Decision on Grouting in Hearth Side Wall
  • 3.3.3 TiO2 Injection [18]
  • 3.4 Consideration to Prolong Blast Furnace Campaign
  • 3.4.1 Designing Features
  • 3.4.1.1 Design on Thermal Gradient
  • 3.4.1.2 Heat Conduction in a Multilayer Refractory Lining in Straight Wall
  • 3.4.1.3 Heat Flux Calculation through Circular Wall
  • 3.4.1.4 Design on Thermo-Mechanical Stress.
  • 3.4.1.5 Thermal Expansion of the Lining and Shell
  • 3.4.2 Quality Upgradation
  • 3.4.2.1 Upgradation of Carbon Refractory in Hearth Lining
  • 3.4.2.2 Micropore and Super Micropore Carbon
  • 3.4.3 Monitoring of Refractory Condition
  • 3.4.3.1 Use of Duel Thermocouple
  • 3.4.3.2 Acoustoultrasonicecho Technique
  • 3.4.3.3 Anomalies in Defining Refractory Lining Thickness
  • 3.4.3.4 Design of Ceramic cup
  • 3.4.3.5 Advantages of Using Ceramic Cup
  • Cracking Mechanism
  • 3.4.4 Thermal Solution
  • 3.4.4.1 Formation of ``Freezing Layer
  • 3.4.5 Bottom Pad Cooling Layer
  • 3.4.6 Blast Furnace Repair Processes
  • 3.4.6.1 Relining Process
  • 3.4.6.2 Expansion of Blast Furnace Inner Volume
  • 3.4.6.3 Relining Activity
  • 3.4.6.4 Dismantling of Old Refractory
  • 3.4.6.5 Lining of New Refractory
  • 3.4.6.6 Brick Lining in Stack
  • 3.4.7 Change of Stack Refractory
  • 3.4.7.1 Gas-Free Atmosphere
  • 3.4.7.2 Refractory Concrete for Capping
  • 3.5 Cast House Refractory
  • 3.5.1 Tap Hole Design
  • 3.5.2 Tap Hole Clay and its Performances
  • 3.5.2.1 Wear Mechanism of Tap Hole Clay
  • 3.5.2.2 Moisture and Volatile Matter
  • 3.5.2.3 Checking the Properties of Tap Hole Clay to Ensure Performance
  • 3.5.3 Hot Metal Trough and its Design
  • 3.5.3.1 Pooling Trough
  • 3.5.3.2 Semi-Pooling Trough
  • 3.5.3.3 Non-pooling Trough
  • 3.5.4 Refractory for Hot Metal Trough and Iron Runners
  • 3.5.5 Wear Mechanism
  • 3.5.6 Modern Refractory Practices
  • 3.5.6.1 Use of Antioxidants
  • 3.5.6.2 Effect of Spinel Content on Refractory Castables
  • 3.5.6.3 Effect of Silicon Carbide
  • 3.5.6.4 Use of SiO2-Sol as a Binder
  • 3.5.6.5 High Performance Backup Lining
  • References
  • Chapter 4: Hot Stove and Hot Air Carrying System
  • 4.1 Introduction
  • 4.2 Design of Hot Blast Stove
  • 4.3 Refractory Lining Design
  • 4.3.1 High Alumina Refractory in Hot Blast Stove.
  • 4.3.2 Silica Refractory in Hot Blast Stoves.