Loading…

Fundamentals of Image, Audio, and Video Processing Using MATLAB : With Applications to Pattern Recognition.

This book introduces the concepts and principles of media processing and its applications in pattern recognition by adopting a hands-on approach using program implementations. The book covers the tools and techniques for reading, modifying and writing image, audio and video files using the data anal...

Full description

Bibliographic Details
Main Author: Parekh, Ranjan
Format: e-Book
Language:English
Published: Milton : Taylor & Francis Group, 2021.
Edition:1st ed.
Subjects:
Online Access:Full-text access
Table of Contents:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • Author
  • Abbreviations
  • 1 Image Processing
  • 1.1 Introduction
  • 1.2 Toolboxes and Functions
  • 1.2.1 Basic MATLAB (BM) Functions
  • 1.2.2 Image Processing Toolbox (IPT) Functions
  • 1.2.3 Signal Processing Toolbox (SPT) Functions
  • 1.2.4 Wavelet Toolbox (WT) Functions
  • 1.3 Import Export and Conversions
  • 1.3.1 Read and Write Image Data
  • 1.3.2 Image-Type Conversion
  • 1.3.3 Image Color
  • 1.3.4 Synthetic Images
  • 1.4 Display and Exploration
  • 1.4.1 Basic Display
  • 1.4.2 Interactive Exploration
  • 1.4.3 Building Interactive Tools
  • 1.5 Geometric Transformation and Image Registration
  • 1.5.1 Common Geometric Transformations
  • 1.5.2 Affine and Projective Transformations
  • 1.5.3 Image Registration
  • 1.6 Image Filtering and Enhancement
  • 1.6.1 Image Filtering
  • 1.6.2 Edge Detection
  • 1.6.3 Contrast Adjustment
  • 1.6.4 Morphological Operations
  • 1.6.5 ROI and Block Processing
  • 1.6.6 Image Arithmetic
  • 1.6.7 De-blurring
  • 1.7 Image Segmentation and Analysis
  • 1.7.1 Image Segmentation
  • 1.7.2 Object Analysis
  • 1.7.3 Region and Image Properties
  • 1.7.4 Texture Analysis
  • 1.7.5 Image Quality
  • 1.7.6 Image Transforms
  • 1.8 Working in Frequency Domain
  • 1.9 Image Processing Using Simulink
  • 1.10 Notes on 2-D Plotting Functions
  • 1.11 Notes on 3-D Plotting Functions
  • Review Questions
  • 2 Audio Processing
  • 2.1 Introduction
  • 2.2 Toolboxes and Functions
  • 2.2.1 Basic MATLAB (BM) Functions
  • 2.2.2 Audio System Toolbox (AST) Functions
  • 2.2.3 DSP System Toolbox (DSPST) Functions
  • 2.2.4 Signal Processing Toolbox (SPT) Functions
  • 2.3 Sound Waves
  • 2.4 Audio I/O and Waveform Generation
  • 2.5 Audio Processing Algorithm Design
  • 2.6 Measurements and Feature Extraction
  • 2.7 Simulation, Tuning and Visualization.
  • 2.8 Musical Instrument Digital Interface (MIDI)
  • 2.9 Temporal Filters
  • 2.10 Spectral Filters
  • 2.11 Audio Processing Using Simulink
  • Review Questions
  • 3 Video Processing
  • 3.1 Introduction
  • 3.2 Toolboxes and Functions
  • 3.2.1 Basic MATLAB (BM) Functions
  • 3.2.2 Computer Vision System Toolbox (CVST) Functions
  • 3.3 Video Input Output and Playback
  • 3.4 Processing Video Frames
  • 3.5 Video Color Spaces
  • 3.6 Object Detection
  • 3.6.1 Blob Detector
  • 3.6.2 Foreground Detector
  • 3.6.3 People Detector
  • 3.6.4 Face Detector
  • 3.6.5 Optical Character Recognition (OCR)
  • 3.7 Motion Tracking
  • 3.7.1 Histogram Based Tracker
  • 3.7.2 Optical Flow
  • 3.7.3 Point Tracker
  • 3.7.4 Kalman Filter
  • 3.7.5 Block Matcher
  • 3.8 Video Processing Using Simulink
  • Review Questions
  • 4 Pattern Recognition
  • 4.1 Introduction
  • 4.2 Toolboxes and Functions
  • 4.2.1 Computer Vision System Toolbox (CVST)
  • 4.2.2 Statistics and Machine Learning Toolbox (SMLT)
  • 4.2.3 Neural Network Toolbox (NNT)
  • 4.3 Data Acquisition
  • 4.4 Pre-processing
  • 4.5 Feature Extraction
  • 4.5.1 Minimum Eigenvalue Method
  • 4.5.2 Harris Corner Detector
  • 4.5.3 FAST Algorithm
  • 4.5.4 MSER Algorithm
  • 4.5.5 SURF Algorithm
  • 4.5.6 KAZE Algorithm
  • 4.5.7 BRISK Algorithm
  • 4.5.8 LBP Algorithm
  • 4.5.9 HOG Algorithm
  • 4.6 Clustering
  • 4.6.1 Similarity Metrics
  • 4.6.2 k-means Clustering
  • 4.6.3 Hierarchical Clustering
  • 4.6.4 GMM-Based Clustering
  • 4.7 Classification
  • 4.7.1 k-NN Classifiers
  • 4.7.2 Artificial Neural Network (ANN) classifiers
  • 4.7.3 Decision Tree Classifiers
  • 4.7.4 Discriminant Analysis Classifiers
  • 4.7.5 Naive Bayes Classifiers
  • 4.7.6 Support Vector Machine (SVM) Classifiers
  • 4.7.7 Classification Learner App
  • 4.8 Performance Evaluation
  • Review Questions
  • Function Summary
  • References
  • Index.