Yüklüyor…
Advances in Peridynamics.
Yazar: | |
---|---|
Diğer Yazarlar: | , |
Materyal Türü: | e-Kitap |
Dil: | İngilizce |
Baskı/Yayın Bilgisi: |
Cham :
Springer International Publishing AG,
2022.
|
Edisyon: | 1st ed. |
Konular: | |
Online Erişim: | Full-text access |
İçindekiler:
- Intro
- Preface
- Contents
- About the Authors
- Chapter 1: Fundamentals of Peridynamics
- 1.1 Introduction
- 1.2 Basic Concept
- 1.3 Bond Kinematics
- 1.4 PD Equilibrium Equations
- 1.5 PD Force Density Vectors
- 1.5.1 Bond-Based Force Density Vector
- 1.5.2 OSB Force Density Vector
- 1.5.3 NOSB Force Density Vector
- 1.6 PD Boundary Conditions
- 1.7 Damage and Failure
- 1.8 Discretization
- 1.8.1 Spatial Integration
- 1.8.2 Time Integration
- 1.8.3 Imposition of Boundary Conditions
- 1.9 Discontinuities
- References
- Chapter 2: Peridynamic Differential Operator
- 2.1 Introduction
- 2.2 Basic Concept
- 2.3 PD Functions for 2D Analysis
- 2.4 PD Functions for 3D Analysis
- 2.5 PD Form of Equilibrium Equations and Strain Energy Density Function
- 2.5.1 PD Form of the Stress Equilibrium Equation
- 2.5.2 PD Form of Deformation Gradient Tensor
- 2.5.3 PD Form of Strain Energy Density Function
- 2.5.4 PD Form of the Displacement Equilibrium Equation
- References
- Chapter 3: Refinements in Peridynamics
- 3.1 Introduction
- 3.2 Bond-Based Force Density Vector
- 3.3 OSB Force Density Vector
- 3.4 NOSB Force Density Vector
- 3.4.1 Quasi-Static Loading
- 3.4.2 Dynamic Loading
- References
- Chapter 4: Weak Form of Peridynamic Equilibrium Equations
- 4.1 Introduction
- 4.2 Weak Form of PD Equilibrium Equations
- 4.3 Constitutive Model for Neo-Hookean Material
- 4.4 Numerical Implementation
- 4.5 Numerical Results
- Appendix
- References
- Chapter 5: Peridynamic Modeling of Hyperelastic Materials
- 5.1 Introduction
- 5.2 Anand s Model
- 5.3 Failure Criterion
- 5.4 Numerical Implementation
- 5.5 Numerical Results
- Appendix
- References
- Chapter 6: Peridynamic Modeling of Visco-Hyperelastic Deformation
- 6.1 Introduction
- 6.2 Constitutive Models
- 6.2.1 Hyperelastic Response.
- 6.2.2 Viscoelastic Response
- 6.2.3 Elastic-Viscoelastic Material Interface
- 6.3 Tangent Moduli
- 6.4 Numerical Results
- 6.4.1 Relaxation and Creep Responses of a Viscoelastic Prism
- 6.5 Relaxation Response
- 6.6 Creep and Recovery Responses
- 6.6.1 Creep Response of a Nonhomogeneous Prism
- References
- Chapter 7: Direct Imposition of Boundary Conditions without a Fictitious Layer
- 7.1 Introduction
- 7.2 PD Equilibrium Equations under Homogeneous Deformation
- 7.3 Unification of PD Equations
- 7.4 Numerical Implementation
- 7.5 Numerical Results
- 7.5.1 Ordinary Boundary Conditions
- 7.5.2 Mixed Boundary Conditions
- References
- Chapter 8: Peridynamic Modeling of Thermoelastic Deformation
- 8.1 Introduction
- 8.2 Thermoelastic Deformation
- 8.3 Numerical Implementation
- 8.4 Numerical Results
- References
- Chapter 9: Peridynamic Modeling of Elastoplastic Deformation
- 9.1 Introduction
- 9.2 Plane Strain J2 Plasticity Formulation with Isotropic Hardening
- 9.3 Numerical Implementation
- 9.3.1 Return Mapping Algorithm
- 9.3.2 Elastoplastic Tangent Modulus
- 9.3.3 Algorithmic Details
- 9.4 Numerical Results
- References
- Chapter 10: Peridynamic Modeling of Creep
- 10.1 Introduction
- 10.2 Liu and Murakami Creep Damage Model
- 10.3 Incremental Strain and Stress States
- 10.4 NOSB PD Force Density Vector
- 10.5 Numerical Implementation
- 10.6 Numerical Results
- 10.6.1 Uniaxial Creep
- 10.6.2 Creep Deformation of a Rectangular Plate
- References
- Chapter 11: Axisymmetric Peridynamic Analysis
- 11.1 Introduction
- 11.2 Axisymmetric Assumptions
- 11.3 PD Form of Mechanical Power Balance
- 11.4 PD Form of Thermal Power Balance
- 11.5 PD Form of Rate of Internal Energy Density
- 11.6 Axisymmetric PD Equations of Motion
- 11.7 Determination of Force Density Vector
- 11.8 Evolution of Cauchy Stress.
- 11.9 Johnson-Cook Plasticity Model
- 11.10 Determination of Equivalent Plastic Strain
- 11.11 Evolution of Cauchy Stress and Temperature
- 11.12 Numerical Simulations
- References
- Chapter 12: Peridynamic Modeling of Finite Deformation of Beams
- 12.1 Introduction
- 12.2 PD Energy Balance
- 12.3 Simo-Reissner Beam Theory
- 12.4 PD Beam Equation of Motion
- 12.4.1 Invariance under Rigid Translation
- 12.4.2 Invariance under Rigid Rotation
- 12.5 Power Conjugate and Deformation States of PD Beam
- 12.6 Constitutive Correspondence
- 12.7 Constitutive Equations
- 12.8 Rotation Update
- 12.9 Strain Update
- 12.10 Numerical Implementation
- 12.10.1 Quasi-Static Solution Using Newton-Raphson Method
- 12.10.2 Quasi-Static Solution Using Arc-Length Method
- 12.10.3 Pseudo-Dynamic Approach
- 12.11 Elimination of Zero-Energy Modes
- 12.12 Numerical Results
- 12.12.1 Pure Bending of a Cantilever Beam
- 12.12.2 Stretching of a Circular Beam with Cut
- 12.12.3 Large Deflection of a Semicircular Arch
- 12.12.4 Frame under Point Load
- Appendix
- References
- Chapter 13: Bond-Based Peridynamics Including Rotation
- 13.1 Introduction
- 13.2 Bond Kinematics
- 13.3 Peridynamic Micropotential and Bond Force
- 13.4 Balance Laws
- 13.5 Bond Force in a Nonsymmetric Horizon
- 13.6 Bond Constants
- 13.7 Bond Breakage Criteria
- 13.8 Numerical Implementation
- 13.9 Numerical Results
- 13.9.1 Crack Growth under Opening Mode
- 13.9.2 Crack Growth under Shearing Mode
- References
- Chapter 14: Bond-Based Peridynamics with Rotation for a Composite Lamina
- 14.1 Introduction
- 14.2 Peridynamic Micropotential
- 14.3 Peridynamic Bond Constants
- 14.4 Peridynamic Bond Force
- 14.5 Surface Correction for Fiber Micromodulus
- 14.6 Numerical Implementation
- 14.7 Computation of Bond Stretch and Skew Angles
- 14.8 Bond Breakage Criteria.
- 14.9 Numerical Results
- 14.9.1 Lamina under Stretch
- 14.9.2 Progressive Failure
- References
- Chapter 15: Coupling of Bond-Based Peridynamics with Finite Elements in ANSYS
- 15.1 Introduction
- 15.2 Coupling Approach
- 15.3 Internal Force Vectors
- 15.4 Discrete Form of PD Force Vectors
- 15.4.1 Force Vector for BB Interaction
- 15.4.2 Force Vector for PDDO Interaction
- 15.5 Virtual Work in PD Domain due to Internal Forces
- 15.6 Virtual Work in PD Region due to Internal Tractions along the Boundary
- 15.7 Virtual Work in PD Domain due to Inertial Forces
- 15.8 Virtual Work in PD Region due to External Tractions
- 15.9 Virtual Work in PD Region due to Applied Body Loads
- 15.10 Virtual Work in FE Domain due to Internal Forces
- 15.11 Virtual Work in FE Domain due to Inertial Forces
- 15.12 Virtual Work in FE Domain due to Applied External Tractions
- 15.13 Virtual Work in FE Domain due to Applied Body Loads
- 15.14 Assembly of Discretized Coupled PD-FE Equations
- 15.15 ANSYS Implementation with MATRIX27 Element
- 15.15.1 Stiffness Matrix for BB Interactions
- 15.15.2 Stiffness Matrix for PDDO Interactions
- 15.15.3 Stiffness Matrix for PD Internal Tractions along the Boundary
- 15.16 Numerical Results
- 15.16.1 Plate under Quasi-Static Loading
- 15.16.2 Plate under Transient Loading
- References
- Chapter 16: Peridynamics for Physics Informed Neural Network
- 16.1 Introduction
- 16.2 Basics of PINN Framework
- 16.3 Nonlocal PINN Architecture
- 16.4 Governing Equations of Linear Elastic Deformation
- 16.5 Loss Function for Linear Elastic Deformation
- 16.6 Numerical Results
- 16.6.1 Local PINN Results
- 16.6.2 Nonlocal PINN Results
- AD-PDDO-PINN
- PDDO-PINN
- References
- Correction to: Advances in Peridynamics.
- Correction to: E. Madenci, et al., Advances in Peridynamics, https://doi.org/10.1007/978-3-030-97858-7
- Index.