Yüklüyor…

Advances in Peridynamics.

Detaylı Bibliyografya
Yazar: Madenci, Erdogan
Diğer Yazarlar: Roy, Pranesh, Behera, Deepak
Materyal Türü: e-Kitap
Dil:İngilizce
Baskı/Yayın Bilgisi: Cham : Springer International Publishing AG, 2022.
Edisyon:1st ed.
Konular:
Online Erişim:Full-text access
İçindekiler:
  • Intro
  • Preface
  • Contents
  • About the Authors
  • Chapter 1: Fundamentals of Peridynamics
  • 1.1 Introduction
  • 1.2 Basic Concept
  • 1.3 Bond Kinematics
  • 1.4 PD Equilibrium Equations
  • 1.5 PD Force Density Vectors
  • 1.5.1 Bond-Based Force Density Vector
  • 1.5.2 OSB Force Density Vector
  • 1.5.3 NOSB Force Density Vector
  • 1.6 PD Boundary Conditions
  • 1.7 Damage and Failure
  • 1.8 Discretization
  • 1.8.1 Spatial Integration
  • 1.8.2 Time Integration
  • 1.8.3 Imposition of Boundary Conditions
  • 1.9 Discontinuities
  • References
  • Chapter 2: Peridynamic Differential Operator
  • 2.1 Introduction
  • 2.2 Basic Concept
  • 2.3 PD Functions for 2D Analysis
  • 2.4 PD Functions for 3D Analysis
  • 2.5 PD Form of Equilibrium Equations and Strain Energy Density Function
  • 2.5.1 PD Form of the Stress Equilibrium Equation
  • 2.5.2 PD Form of Deformation Gradient Tensor
  • 2.5.3 PD Form of Strain Energy Density Function
  • 2.5.4 PD Form of the Displacement Equilibrium Equation
  • References
  • Chapter 3: Refinements in Peridynamics
  • 3.1 Introduction
  • 3.2 Bond-Based Force Density Vector
  • 3.3 OSB Force Density Vector
  • 3.4 NOSB Force Density Vector
  • 3.4.1 Quasi-Static Loading
  • 3.4.2 Dynamic Loading
  • References
  • Chapter 4: Weak Form of Peridynamic Equilibrium Equations
  • 4.1 Introduction
  • 4.2 Weak Form of PD Equilibrium Equations
  • 4.3 Constitutive Model for Neo-Hookean Material
  • 4.4 Numerical Implementation
  • 4.5 Numerical Results
  • Appendix
  • References
  • Chapter 5: Peridynamic Modeling of Hyperelastic Materials
  • 5.1 Introduction
  • 5.2 Anand s Model
  • 5.3 Failure Criterion
  • 5.4 Numerical Implementation
  • 5.5 Numerical Results
  • Appendix
  • References
  • Chapter 6: Peridynamic Modeling of Visco-Hyperelastic Deformation
  • 6.1 Introduction
  • 6.2 Constitutive Models
  • 6.2.1 Hyperelastic Response.
  • 6.2.2 Viscoelastic Response
  • 6.2.3 Elastic-Viscoelastic Material Interface
  • 6.3 Tangent Moduli
  • 6.4 Numerical Results
  • 6.4.1 Relaxation and Creep Responses of a Viscoelastic Prism
  • 6.5 Relaxation Response
  • 6.6 Creep and Recovery Responses
  • 6.6.1 Creep Response of a Nonhomogeneous Prism
  • References
  • Chapter 7: Direct Imposition of Boundary Conditions without a Fictitious Layer
  • 7.1 Introduction
  • 7.2 PD Equilibrium Equations under Homogeneous Deformation
  • 7.3 Unification of PD Equations
  • 7.4 Numerical Implementation
  • 7.5 Numerical Results
  • 7.5.1 Ordinary Boundary Conditions
  • 7.5.2 Mixed Boundary Conditions
  • References
  • Chapter 8: Peridynamic Modeling of Thermoelastic Deformation
  • 8.1 Introduction
  • 8.2 Thermoelastic Deformation
  • 8.3 Numerical Implementation
  • 8.4 Numerical Results
  • References
  • Chapter 9: Peridynamic Modeling of Elastoplastic Deformation
  • 9.1 Introduction
  • 9.2 Plane Strain J2 Plasticity Formulation with Isotropic Hardening
  • 9.3 Numerical Implementation
  • 9.3.1 Return Mapping Algorithm
  • 9.3.2 Elastoplastic Tangent Modulus
  • 9.3.3 Algorithmic Details
  • 9.4 Numerical Results
  • References
  • Chapter 10: Peridynamic Modeling of Creep
  • 10.1 Introduction
  • 10.2 Liu and Murakami Creep Damage Model
  • 10.3 Incremental Strain and Stress States
  • 10.4 NOSB PD Force Density Vector
  • 10.5 Numerical Implementation
  • 10.6 Numerical Results
  • 10.6.1 Uniaxial Creep
  • 10.6.2 Creep Deformation of a Rectangular Plate
  • References
  • Chapter 11: Axisymmetric Peridynamic Analysis
  • 11.1 Introduction
  • 11.2 Axisymmetric Assumptions
  • 11.3 PD Form of Mechanical Power Balance
  • 11.4 PD Form of Thermal Power Balance
  • 11.5 PD Form of Rate of Internal Energy Density
  • 11.6 Axisymmetric PD Equations of Motion
  • 11.7 Determination of Force Density Vector
  • 11.8 Evolution of Cauchy Stress.
  • 11.9 Johnson-Cook Plasticity Model
  • 11.10 Determination of Equivalent Plastic Strain
  • 11.11 Evolution of Cauchy Stress and Temperature
  • 11.12 Numerical Simulations
  • References
  • Chapter 12: Peridynamic Modeling of Finite Deformation of Beams
  • 12.1 Introduction
  • 12.2 PD Energy Balance
  • 12.3 Simo-Reissner Beam Theory
  • 12.4 PD Beam Equation of Motion
  • 12.4.1 Invariance under Rigid Translation
  • 12.4.2 Invariance under Rigid Rotation
  • 12.5 Power Conjugate and Deformation States of PD Beam
  • 12.6 Constitutive Correspondence
  • 12.7 Constitutive Equations
  • 12.8 Rotation Update
  • 12.9 Strain Update
  • 12.10 Numerical Implementation
  • 12.10.1 Quasi-Static Solution Using Newton-Raphson Method
  • 12.10.2 Quasi-Static Solution Using Arc-Length Method
  • 12.10.3 Pseudo-Dynamic Approach
  • 12.11 Elimination of Zero-Energy Modes
  • 12.12 Numerical Results
  • 12.12.1 Pure Bending of a Cantilever Beam
  • 12.12.2 Stretching of a Circular Beam with Cut
  • 12.12.3 Large Deflection of a Semicircular Arch
  • 12.12.4 Frame under Point Load
  • Appendix
  • References
  • Chapter 13: Bond-Based Peridynamics Including Rotation
  • 13.1 Introduction
  • 13.2 Bond Kinematics
  • 13.3 Peridynamic Micropotential and Bond Force
  • 13.4 Balance Laws
  • 13.5 Bond Force in a Nonsymmetric Horizon
  • 13.6 Bond Constants
  • 13.7 Bond Breakage Criteria
  • 13.8 Numerical Implementation
  • 13.9 Numerical Results
  • 13.9.1 Crack Growth under Opening Mode
  • 13.9.2 Crack Growth under Shearing Mode
  • References
  • Chapter 14: Bond-Based Peridynamics with Rotation for a Composite Lamina
  • 14.1 Introduction
  • 14.2 Peridynamic Micropotential
  • 14.3 Peridynamic Bond Constants
  • 14.4 Peridynamic Bond Force
  • 14.5 Surface Correction for Fiber Micromodulus
  • 14.6 Numerical Implementation
  • 14.7 Computation of Bond Stretch and Skew Angles
  • 14.8 Bond Breakage Criteria.
  • 14.9 Numerical Results
  • 14.9.1 Lamina under Stretch
  • 14.9.2 Progressive Failure
  • References
  • Chapter 15: Coupling of Bond-Based Peridynamics with Finite Elements in ANSYS
  • 15.1 Introduction
  • 15.2 Coupling Approach
  • 15.3 Internal Force Vectors
  • 15.4 Discrete Form of PD Force Vectors
  • 15.4.1 Force Vector for BB Interaction
  • 15.4.2 Force Vector for PDDO Interaction
  • 15.5 Virtual Work in PD Domain due to Internal Forces
  • 15.6 Virtual Work in PD Region due to Internal Tractions along the Boundary
  • 15.7 Virtual Work in PD Domain due to Inertial Forces
  • 15.8 Virtual Work in PD Region due to External Tractions
  • 15.9 Virtual Work in PD Region due to Applied Body Loads
  • 15.10 Virtual Work in FE Domain due to Internal Forces
  • 15.11 Virtual Work in FE Domain due to Inertial Forces
  • 15.12 Virtual Work in FE Domain due to Applied External Tractions
  • 15.13 Virtual Work in FE Domain due to Applied Body Loads
  • 15.14 Assembly of Discretized Coupled PD-FE Equations
  • 15.15 ANSYS Implementation with MATRIX27 Element
  • 15.15.1 Stiffness Matrix for BB Interactions
  • 15.15.2 Stiffness Matrix for PDDO Interactions
  • 15.15.3 Stiffness Matrix for PD Internal Tractions along the Boundary
  • 15.16 Numerical Results
  • 15.16.1 Plate under Quasi-Static Loading
  • 15.16.2 Plate under Transient Loading
  • References
  • Chapter 16: Peridynamics for Physics Informed Neural Network
  • 16.1 Introduction
  • 16.2 Basics of PINN Framework
  • 16.3 Nonlocal PINN Architecture
  • 16.4 Governing Equations of Linear Elastic Deformation
  • 16.5 Loss Function for Linear Elastic Deformation
  • 16.6 Numerical Results
  • 16.6.1 Local PINN Results
  • 16.6.2 Nonlocal PINN Results
  • AD-PDDO-PINN
  • PDDO-PINN
  • References
  • Correction to: Advances in Peridynamics.
  • Correction to: E. Madenci, et al., Advances in Peridynamics, https://doi.org/10.1007/978-3-030-97858-7
  • Index.