Yüklüyor…
Deep Reinforcement Learning for Wireless Networks
This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with...
Asıl Yazarlar: | Yu, F. Richard (Yazar), He, Ying (Yazar) |
---|---|
Müşterek Yazar: | SpringerLink (Online service) |
Materyal Türü: | e-Kitap |
Dil: | İngilizce |
Baskı/Yayın Bilgisi: |
Cham :
Springer International Publishing : Imprint: Springer,
2019.
|
Edisyon: | 1st ed. 2019. |
Seri Bilgileri: | SpringerBriefs in Electrical and Computer Engineering,
|
Konular: | |
Online Erişim: | Full-text access OPAC'ta görüntüle |
Benzer Materyaller
-
Optimization for Wireless Powered Communication Networks
Yazar:: Gui, Guan, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Data-Driven Wireless Networks A Compressive Spectrum Approach /
Yazar:: Gao, Yue, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Developing Networks using Artificial Intelligence
Yazar:: Yao, Haipeng, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Secure Image Transmission in Wireless Sensor Network (WSN) Applications
Yazar:: Shankar, K., ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Learning-based VANET Communication and Security Techniques
Yazar:: Xiao, Liang, ve diğerleri
Baskı/Yayın Bilgisi: (2019)