Yüklüyor…
Machine Learning for the Quantified Self On the Art of Learning from Sensory Data /
This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from state-of-the-art sci...
Asıl Yazarlar: | Hoogendoorn, Mark (Yazar), Funk, Burkhardt (Yazar) |
---|---|
Müşterek Yazar: | SpringerLink (Online service) |
Materyal Türü: | e-Kitap |
Dil: | İngilizce |
Baskı/Yayın Bilgisi: |
Cham :
Springer International Publishing : Imprint: Springer,
2018.
|
Edisyon: | 1st ed. 2018. |
Seri Bilgileri: | Cognitive Systems Monographs,
35 |
Konular: | |
Online Erişim: | Full-text access OPAC'ta görüntüle |
Benzer Materyaller
-
Quantifying and Processing Biomedical and Behavioral Signals
Baskı/Yayın Bilgisi: (2019) -
Visual Knowledge Discovery and Machine Learning
Yazar:: Kovalerchuk, Boris
Baskı/Yayın Bilgisi: (2018) -
Machine Learning Paradigms Artificial Immune Systems and their Applications in Software Personalization /
Yazar:: Sotiropoulos, Dionisios N., ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Advances in Self-Organizing Maps and Learning Vector Quantization Proceedings of the 11th International Workshop WSOM 2016, Houston, Texas, USA, January 6-8, 2016 /
Baskı/Yayın Bilgisi: (2016) -
Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods
Yazar:: Vluymans, Sarah
Baskı/Yayın Bilgisi: (2019)