Yüklüyor…
Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic
In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected...
Asıl Yazarlar: | Olivas, Frumen (Yazar), Valdez, Fevrier (Yazar), Castillo, Oscar (Yazar), Melin, Patricia (Yazar) |
---|---|
Müşterek Yazar: | SpringerLink (Online service) |
Materyal Türü: | e-Kitap |
Dil: | İngilizce |
Baskı/Yayın Bilgisi: |
Cham :
Springer International Publishing : Imprint: Springer,
2018.
|
Edisyon: | 1st ed. 2018. |
Seri Bilgileri: | SpringerBriefs in Computational Intelligence,
|
Konular: | |
Online Erişim: | Full-text access OPAC'ta görüntüle |
Benzer Materyaller
-
New Classification Method Based on Modular Neural Networks with the LVQ Algorithm and Type-2 Fuzzy Logic
Yazar:: Amezcua, Jonathan, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks
Yazar:: Gaxiola, Fernando, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with Bio-Inspired Algorithms for Time Series Prediction
Yazar:: Soto, Jesus, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic
Yazar:: Gonzalez, Claudia I., ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Bioinspired Heuristics for Optimization
Baskı/Yayın Bilgisi: (2019)