Yüklüyor…

Design, Analysis and Application of Magnetless Doubly Salient Machines

This thesis investigates the key characteristics of magnetless doubly salient machines, evaluates their design philosophies, and proposes new topologies for various applications. It discusses the background of and previous research on magnetless machines, while also outlining upcoming trends and pot...

Ful tanımlama

Detaylı Bibliyografya
Yazar: Lee, Christopher H. T. (Yazar)
Müşterek Yazar: SpringerLink (Online service)
Materyal Türü: e-Kitap
Dil:İngilizce
Baskı/Yayın Bilgisi: Singapore : Springer Nature Singapore : Imprint: Springer, 2018.
Edisyon:1st ed. 2018.
Seri Bilgileri:Springer Theses, Recognizing Outstanding Ph.D. Research,
Konular:
Online Erişim:Full-text access
OPAC'ta görüntüle
Diğer Bilgiler
Özet:This thesis investigates the key characteristics of magnetless doubly salient machines, evaluates their design philosophies, and proposes new topologies for various applications. It discusses the background of and previous research on magnetless machines, while also outlining upcoming trends and potential future developments. The thesis begins by presenting various torque-improving structures - namely the multi-tooth structure, the double-rotor (DR) structure, the axial-field (AF) structure, and the flux-reversal (FR) structure - for magnetless machines. It subsequently addresses the idea of merging the design philosophies of two different machines to form new dual-mode machines. Thanks to a reconfigured winding arrangement and controllable DC-field excitation, the proposed machines can further extend their operating range to meet the extreme demands of applications in electric vehicles and wind power generation. Lastly, the thesis employs the finite element method (FEM) tothoroughly analyze the proposed machines' key performance parameters and develops experimental setups to verify the proposed concepts.
Fiziksel Özellikler:XXX, 199 p. 142 illus., 133 illus. in color. online resource.
ISBN:9789811070778
ISSN:2190-5061
DOI:10.1007/978-981-10-7077-8