Arama Sonuçları - "\"((\\"(chess OR loss) layers training .\\") OR (\\"(chess OR loss) layer training .\\"))*\""
Şunu mu demek istediniz:
- chess »
-
1
Deep Learning with TensorFlow and Keras - 3rd Edition : Build and Deploy Supervised, Unsupervised, Deep, and Reinforcement Learning Models.
Baskı/Yayın Bilgisi Packt Publishing, Limited, 2022.İçindekiler: “…-- Introduction to neural networks -- Perceptron -- Our first example of TensorFlow code -- Multi-layer perceptron: our first example of a network -- Problems in training the perceptron and solution -- Activation function: sigmoid -- Activation function: tanh -- Activation function: ReLU -- Two additional activation functions: ELU and Leaky ReLU -- Activation functions -- In short: what are neural networks after all? …”
Full-text access
e-Kitap -
2
Deep Learning with Python, Second Edition.
Baskı/Yayın Bilgisi Manning Publications Co. LLC, 2021.İçindekiler: “…-- 3.3 Keras and TensorFlow: A brief history -- 3.4 Setting up a deep learning workspace -- 3.4.1 Jupyter notebooks: The preferred way to run deep learning experiments -- 3.4.2 Using Colaboratory -- 3.5 First steps with TensorFlow -- 3.5.1 Constant tensors and variables -- 3.5.2 Tensor operations: Doing math in TensorFlow -- 3.5.3 A second look at the GradientTape API -- 3.5.4 An end-to-end example: A linear classifier in pure TensorFlow -- 3.6 Anatomy of a neural network: Understanding core Keras APIs -- 3.6.1 Layers: The building blocks of deep learning -- 3.6.2 From layers to models -- 3.6.3 The "compile" step: Configuring the learning process -- 3.6.4 Picking a loss function -- 3.6.5 Understanding the fit() method -- 3.6.6 Monitoring loss and metrics on validation data -- 3.6.7 Inference: Using a model after training -- Summary -- 4 Getting started with neural networks: Classification and regression -- 4.1 Classifying movie reviews: A binary classification example -- 4.1.1 The IMDB dataset -- 4.1.2 Preparing the data -- 4.1.3 Building your model -- 4.1.4 Validating your approach.…”
Full-text access
e-Kitap -
3
Deep Learning : Foundations and Concepts.
Baskı/Yayın Bilgisi Springer International Publishing AG, 2023.İçindekiler: “…A Brief History of Machine Learning -- 1.3.1 Single-layer networks -- 1.3.2 Backpropagation -- 1.3.3 Deep networks -- 2 Probabilities -- 2.1. …”
Full-text access
e-Kitap -
4
Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications FICTA 2016, Volume 1 /
Baskı/Yayın Bilgisi Springer Nature Singapore : Imprint: Springer, 2017.İçindekiler: “…Minimization of Energy Consumption Using X-Layer Network Transformation Model for IEEE 802.15.4-Based MWSNs -- Chapter 75. …”
Full-text access
e-Kitap -
5
Intelligent and Fuzzy Techniques : Proceedings of the INFUS 2020 Conference, Istanbul, Turkey, July 21-23 2020.
Baskı/Yayın Bilgisi Springer International Publishing AG, 2020.İçindekiler: “…Comparison of Fuzzy C-Means and K-Means Clustering Performance: An Application on Household Budget Survey Data -- Abstract -- 1 Introduction -- 2 Methods -- 3 Results -- 3.1 Descriptive Statistics -- 3.2 Distribution Analysis -- 3.3 Normality Tests -- 3.4 Classification Results -- 4 Conclusions and Future Work -- References -- A Hybrid Approach for Clustering and Selecting of Cloud Services Based on User Preferences Evaluation -- Abstract -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Cloud Architecture -- 3.2 Selection Layer Functionality -- 4 Case Study -- 5 Conclusion -- References -- Basket Patterns in Turkey: A Clustering of FMCG Baskets Using Consumer Panel Data -- Abstract -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Data -- 5 Model Building and Comparison -- 6 Findings -- 7 Conclusion and Discussion -- Acknowledgement -- References -- Journey Segmentation of Turkish Tobacco Users Using Sequence Clustering Techniques -- Abstract -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Data -- 5 Model Building and Comparison -- 6 Findings -- 7 Conclusion and Discussion -- Acknowledgement -- References -- A Survey on Spherical Fuzzy Sets and Clustering the Literature -- Abstract -- 1 Introduction -- 2 Review Methodology and Results -- 3 Conclusion -- References -- Picture Fuzzy Sets and Spherical Fuzzy Sets -- Picture Fuzzy Linear Assignment Method and Its Application to Selection of Pest House Location -- Abstract -- 1 Introduction -- 2 Picture Fuzzy Sets: Preliminaries -- 3 Picture Fuzzy Linear Assignment Method -- 4 An Application to Pest House Location Selection -- 5 Conclusion -- References -- Simple Additive Weighting and Weighted Product Methods Using Picture Fuzzy Sets -- Abstract -- 1 Introduction -- 2 Definitions of Picture Fuzzy Sets -- 3 The Proposed Methods.…”
Full-text access
e-Kitap