Arama Sonuçları - "deep learning"
Önerilen Konular
Önerilen Konular
- Computational Intelligence 53
- Computational intelligence 53
- Artificial intelligence 44
- Artificial Intelligence 39
- Signal processing 23
- Signal, Speech and Image Processing 22
- Communications Engineering, Networks 17
- Telecommunication 17
- Computer vision 11
- Machine learning 11
- Control engineering 9
- Data mining 9
- Computer Vision 8
- Data Mining and Knowledge Discovery 8
- Automation 7
- Big data 7
- Control, Robotics, Automation 7
- Robotics 7
- Mathematics 6
- Biomedical Engineering and Bioengineering 5
- Biomedical engineering 5
- Makine öğrenimi 5
- Python (Computer program language) 5
- Big Data 4
- Computer Modelling 4
- Computer science 4
- Computer simulation 4
- Data and Information Security 4
- Data processing 4
- Data protection 4
-
1
Deep Learning : Foundations and Concepts /
Baskı/Yayın Bilgisi 2024Konular: “…Deep learning (Machine learning)…”
Full-text access
OPAC'ta görüntüle
e-Kitap -
2
Deep Learning : A Visual Approach.
Baskı/Yayın Bilgisi 2021Full-text access
OPAC'ta görüntüle
e-Kitap -
3
Deep Learning : Foundations and Concepts.
Baskı/Yayın Bilgisi 2023İçindekiler: “…Intro -- Preface -- Goals of the book -- Responsible use of technology -- Structure of the book -- References -- Exercises -- Mathematical notation -- Acknowledgements -- Contents -- 1 The Deep Learning Revolution -- 1.1. The Impact of Deep Learning -- 1.1.1 Medical diagnosis -- 1.1.2 Protein structure -- 1.1.3 Image synthesis -- 1.1.4 Large language models -- 1.2. …”
Full-text access
OPAC'ta görüntüle
e-Kitap -
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
Handbook of Deep Learning Applications
Baskı/Yayın Bilgisi 2019İçindekiler: “…Designing a Neural Network from scratch for Big Data powered by Multi-node GPUs -- Deep Learning for Scene Understanding -- Deep Learning for Driverless Vehicles -- Deep Learning for Document Representation -- Deep learning for marine species recognition -- Deep molecular representation in Cheminformatics -- Deep Learning in eHealth -- Deep Learning for Brain Computer Interfaces -- Deep Learning in Gene Expression Modeling.…”
Full-text access
OPAC'ta görüntüle
e-Kitap -
14
Deep Learning-Based Face Analytics.
Baskı/Yayın Bilgisi 2021İçindekiler: “…7.7.2 IJB-A -- 7.7.3 IJB-B -- 7.7.4 IJB-C -- 7.8 Open Issues -- 7.9 Conclusion -- References -- 8 Evolution of Newborn Face Recognition -- 8.1 Introduction -- 8.1.1 Biometric Modalities for Newborns -- 8.1.2 Characteristics and Challenges of Newborn Face Recognition -- 8.2 Datasets for Newborn Face Recognition -- 8.2.1 Newborns Face Database -- 8.2.2 Newborns, Infants, and Toddler Longitudinal Face Database -- 8.2.3 Children Multimodal Biometric Database (CMDB) -- 8.3 Existing Techniques for Newborn Face Recognition -- 8.3.1 Handcrafted Feature Extraction Methods -- 8.3.2 Autoencoder Learning-Based Method -- 8.3.3 Class-Based Penalty in CNN Filter Learning -- 8.3.4 Learning Structure and Strength of CNN Filters -- 8.4 Results and Analysis of Existing Newborn Face Recognition Techniques -- 8.5 Conclusion -- References -- 9 Deep Feature Fusion for Face Analytics -- 9.1 Introduction -- 9.2 Feature Aggregation for Face Recognition -- 9.2.1 Metadata-Based Feature Aggregator Network (M-FAN) -- 9.2.2 Architecture -- 9.2.3 Gradient Backpropagation -- 9.2.4 Batch Training -- 9.2.5 Experiment Setup -- 9.2.6 Results on IJB-A -- 9.2.7 Results on Janus CS4 -- 9.3 Feature Enhancement for Facial Action Unit Recognition -- 9.3.1 Multi-modal Conditional Feature Enhancement (MCFE) -- 9.3.2 Feature Extraction -- 9.3.3 Deep Feature Enhancement -- 9.3.4 Training MCFE for AU Recognition -- 9.3.5 Datasets for Experimental Analysis -- 9.3.6 Experiment Settings -- 9.3.7 Results -- 9.4 Conclusion -- References -- 10 Deep Learning for Video Face Recognition -- 10.1 Introduction -- 10.2 Traditional Methods -- 10.3 Existing Deep Learning-based Approaches -- 10.3.1 Pairwise Distance-Based Methods -- 10.3.2 Pooling-Based Methods -- 10.4 Neural Aggregation Network -- 10.4.1 Feature Embedding Module -- 10.4.2 Aggregation Module -- 10.4.3 Network Training -- 10.5 Experiments.…”
Full-text access
OPAC'ta görüntüle
e-Kitap -
15
Deep Learning with Python, Second Edition.
Baskı/Yayın Bilgisi 2021İçindekiler: “…Intro -- Deep Learning with Python -- Copyright -- dedication -- brief contents -- contents -- front matter -- preface -- acknowledgments -- about this book -- Who should read this book -- About the code -- liveBook discussion forum -- about the author -- about the cover illustration -- 1 What is deep learning? …”
Full-text access
OPAC'ta görüntüle
e-Kitap -
16
-
17
Deep learning-based face analytics /
Baskı/Yayın Bilgisi 2021Full-text access
OPAC'ta görüntüle
e-Kitap -
18
-
19
-
20
Deep Learning and Missing Data in Engineering Systems
Baskı/Yayın Bilgisi 2019İçindekiler: “…Introduction to Missing Data Estimation -- Introduction to Deep Learning -- Missing Data Estimation Using Bat Algorithm -- Missing Data Estimation Using Cuckoo Search Algorithm -- Missing Data Estimation Using Firefly Algorithm -- Missing Data Estimation Using Ant Colony Optimization Algorithm -- Missing Data Estimation Using Ant-Lion Optimizer Algorithm -- Missing Data Estimation Using Invasive Weed Optimization Algorithm -- Missing Data Estimation Using Swarm Intelligence Algorithms from Reduced Dimensions -- Missing Data Estimation Using Swarm Intelligence Algorithms: Deep Learning Framework Analysis -- Conclusion.…”
Full-text access
OPAC'ta görüntüle
e-Kitap