Arama Sonuçları - university of (bolton OR boston)
Önerilen Konular
Önerilen Konular
- Education 6
- General 4
- Administration 3
- Organization & management of education 3
- Research 3
- Education, Higher 2
- English language 2
- Ethics 2
- Fizik 2
- History 2
- Medical 2
- Physics 2
- School management and organization 2
- Social Science 2
- Social sciences 2
- Academic freedom 1
- Admission 1
- Affirmative action programs 1
- African Americans 1
- Bio-ethics 1
- Bioethics 1
- Child development 1
- China 1
- Climate Sciences 1
- Climatology 1
- Colleges of higher education 1
- Communicable diseases 1
- Conservatism 1
- Design 1
- Early childhood education 1
-
1
Corbynism : a critical approach /
Baskı/Yayın Bilgisi Emerald Publishing Limited, 2018.Full-text access
e-Kitap -
2
-
3
Sears and Zemansky's university physics : with modern physics /
Baskı/Yayın Bilgisi Pearson, 2012.Kitap -
4
-
5
Encyclopedia of volcanoes /
Baskı/Yayın Bilgisi Elsevier/AP, Academic Press is an imprint of Elsevier, 2015.Full-text access
e-Kitap -
6
Autonomy in social science research the view from United Kingdom and Australian universities /
Baskı/Yayın Bilgisi Elsevier JAI, 2006.Full-text access
e-Kitap -
7
-
8
Sears ve Zemansky'nin üniversite fiziği /
Baskı/Yayın Bilgisi Pearson Eğitim Çözümleri Tic. Ltd.Şti., 2016.Kitap -
9
-
10
Higher education in a global society achieving diversity, equity and excellence /
Baskı/Yayın Bilgisi Elsevier JAI, 2006.Full-text access
e-Kitap -
11
Gender and the local-global nexus theory, research, and action /
Baskı/Yayın Bilgisi Elsevier JAI, 2006.Full-text access
e-Kitap -
12
Taking life and death seriously bioethics from Japan /
Baskı/Yayın Bilgisi Elsevier JAI, 2005.Full-text access
e-Kitap -
13
-
14
African American education race, community, inequality and achievement ; a tribute to Edgar G. Epps /
Baskı/Yayın Bilgisi JAI, 2002.Full-text access
e-Kitap -
15
Emancipatory Climate Actions Strategies from histories /
Baskı/Yayın Bilgisi Springer International Publishing : Imprint: Palgrave Pivot, 2019.Full-text access
e-Kitap -
16
Bridging the gap between theory, research, and practice the role of child development laboratory programs in early childhood education /
Baskı/Yayın Bilgisi Elsevier/JAI, 2003.Full-text access
e-Kitap -
17
Administering special education in pursuit of dignity and autonomy /
Baskı/Yayın Bilgisi Elsevier JAI, 2004.Full-text access
e-Kitap -
18
Nine Chapters on Mathematical Modernity Essays on the Global Historical Entanglements of the Science of Numbers in China /
Baskı/Yayın Bilgisi Springer International Publishing : Imprint: Springer, 2019.Full-text access
e-Kitap -
19
Teaching leaders to lead teachers educational administration in the era of constant crisis /
Baskı/Yayın Bilgisi Elsevier JAI, 2007.Full-text access
e-Kitap -
20
Deep Learning with Python, Second Edition.
Baskı/Yayın Bilgisi Manning Publications Co. LLC, 2021.İçindekiler: “…4.1.5 Using a trained model to generate predictions on new data -- 4.1.6 Further experiments -- 4.1.7 Wrapping up -- 4.2 Classifying newswires: A multiclass classification example -- 4.2.1 The Reuters dataset -- 4.2.2 Preparing the data -- 4.2.3 Building your model -- 4.2.4 Validating your approach -- 4.2.5 Generating predictions on new data -- 4.2.6 A different way to handle the labels and the loss -- 4.2.7 The importance of having sufficiently large intermediate layers -- 4.2.8 Further experiments -- 4.2.9 Wrapping up -- 4.3 Predicting house prices: A regression example -- 4.3.1 The Boston housing price dataset -- 4.3.2 Preparing the data -- 4.3.3 Building your model -- 4.3.4 Validating your approach using K-fold validation -- 4.3.5 Generating predictions on new data -- 4.3.6 Wrapping up -- Summary -- 5 Fundamentals of machine learning -- 5.1 Generalization: The goal of machine learning -- 5.1.1 Underfitting and overfitting -- 5.1.2 The nature of generalization in deep learning -- 5.2 Evaluating machine learning models -- 5.2.1 Training, validation, and test sets -- 5.2.2 Beating a common-sense baseline -- 5.2.3 Things to keep in mind about model evaluation -- 5.3 Improving model fit -- 5.3.1 Tuning key gradient descent parameters -- 5.3.2 Leveraging better architecture priors -- 5.3.3 Increasing model capacity -- 5.4 Improving generalization -- 5.4.1 Dataset curation -- 5.4.2 Feature engineering -- 5.4.3 Using early stopping -- 5.4.4 Regularizing your model -- Summary -- 6 The universal workflow of machine learning -- 6.1 Define the task -- 6.1.1 Frame the problem -- 6.1.2 Collect a dataset -- 6.1.3 Understand your data -- 6.1.4 Choose a measure of success -- 6.2 Develop a model -- 6.2.1 Prepare the data -- 6.2.2 Choose an evaluation protocol -- 6.2.3 Beat a baseline -- 6.2.4 Scale up: Develop a model that overfits.…”
Full-text access
e-Kitap