Yüklüyor…

Control Applications of Vehicle Dynamics.

This book integrates essential knowledge of car vehicle dynamics and control theory with NI LabVIEW software product application, resulting in a practical yet highly technical guide for designing advanced vehicle dynamics controllers.

Detaylı Bibliyografya
Yazar: Yu, Jingsheng
Diğer Yazarlar: Vantsevich, Vladimir
Materyal Türü: e-Kitap
Dil:İngilizce
Baskı/Yayın Bilgisi: Milton : Taylor & Francis Group, 2021.
Edisyon:1st ed.
Seri Bilgileri:Ground Vehicle Engineering Series
Konular:
Online Erişim:Full-text access
OPAC'ta görüntüle
İçindekiler:
  • Cover
  • Half Title
  • Series Page
  • Title Page
  • Copyright Page
  • Contents
  • Series Preface
  • Preface
  • Acknowledgments
  • Author Biographies
  • PART I: Modeling of Vehicle Dynamics
  • Chapter 1: Introduction
  • 1.1. Vehicle System Dynamics: Brief History and Future Research Directions
  • 1.2. Modeling of Vehicle Dynamics
  • 1.3. Control of Vehicle Dynamics
  • 1.4. Coordinate Systems
  • References
  • Chapter 2: Essential Kinematics and Dynamics
  • 2.1. Vector Descriptions and Transformations
  • 2.2. Change Rate of Vector in Rotating Frame
  • 2.3. Velocities of Points on a Rigid Body
  • 2.4. Vehicle Velocities and Accelerations
  • 2.5. Newton's and Euler's Equations
  • 2.6. Power and Efficiency
  • References
  • Chapter 3: Vehicle Longitudinal Dynamics
  • 3.1. Dynamics of Wheel And Tire
  • 3.1.1. Basic Equations
  • 3.1.2. Rolling Resistance
  • 3.2. Tire Force Properties
  • 3.2.1. Longitudinal Tire Force
  • 3.2.2. Lateral Tire Force
  • 3.2.3. Camber Angle and Camber Force
  • 3.2.4. Kamm Circle
  • 3.3. Total Force and Moment Loads on Wheels
  • 3.4. Equations of Vehicle Motion
  • 3.4.1. Vehicle Forces and Moments
  • 3.4.2. Aerodynamic Forces
  • 3.4.3. Dynamic Axle Loads
  • References
  • Chapter 4: Tire and Wheel Characteristics
  • 4.1. Brake Slip
  • 4.2. Tractive Slip
  • 4.3. Tire Friction Properties
  • References
  • Chapter 5: Acceleration Analysis
  • 5.1. Driveline Torque Distribution
  • 5.1.1. Driveline Configuration
  • 5.1.2. Power Delivery Through Powertrain
  • 5.2. Longitudinal Acceleration
  • 5.2.1. Driving Force Distribution
  • 5.2.2. Ideal Driving Force Distribution
  • 5.2.3. Traction Capability at Different Driveline Configurations
  • 5.2.4. Vehicle Stability in Driving Mode of Operation
  • 5.2.5. Design Implementation of Ideal Torque Distribution
  • 5.2.6. Wheel Torque Vectoring
  • References
  • Chapter 6: Braking Mechanics.
  • 6.1. Straight-Line Braking
  • 6.1.1. Deceleration and Braking Efficiency
  • 6.1.2. Braking Force Distribution
  • 6.2. Braking In Turn
  • 6.3. Braking Stability
  • 6.4. Trailer Influence On Braking
  • References
  • Chapter 7: Regenerative Braking
  • 7.1. Ev And Hev Powertrain Configuration
  • 7.2. Electric Motor
  • 7.3. Power Electronics Unit
  • 7.4. Regeneration Torque
  • 7.5. Vehicle Energy Balance In Braking
  • References
  • Chapter 8: Vehicle Lateral Dynamics
  • 8.1. Steering Geometry
  • 8.2. Kinematic Parameters
  • 8.3. Nonlinear Two-Track Model
  • 8.4. Single-Track Model
  • 8.5. Bicycle Model
  • 8.6. Influence of Crosswind
  • 8.7. Vehicle-Trailer Model
  • References
  • Chapter 9: System Characteristics of Lateral Dynamics
  • 9.1. Steering Characteristics
  • 9.2. Understeer/Oversteer Gradient
  • 9.3. Vehicle Dynamic Response to Steering Input
  • 9.4. Steady-State Gains
  • 9.5. Characteristic And Critical Speeds
  • 9.6. Stability Consideration
  • 9.7. Influence Of 4Ws Configuration
  • References
  • Chapter 10: Normal and Roll Dynamics
  • 10.1. Quarter-Car Model
  • 10.2. Roll Movement
  • 10.3. Vehicle Transverse Model
  • 10.4. Vehicle Two-Axle Model
  • 10.5. Steady-State
  • 10.6. Three-Dimensional Dynamics Model
  • References
  • PART II: Control Design
  • Chapter 11: Introduction to Control Theory and Methods
  • 11.1. Second-Order Linear Systems
  • 11.2. State-Space Model
  • 11.3. State Observer
  • 11.4. Kalman Filter
  • 11.5. Lyapunov Stability Theory
  • 11.6. Linear Quadratic Optimal Control
  • 11.7. Linear Quadratic Optimal Control with Output Target
  • References
  • Chapter 12: Wheel Slip Control
  • 12.1. Brake Slip Control
  • 12.2. Tractive Slip Control
  • 12.3. Speed Differential Control By Toque Vectoring
  • References
  • Chapter 13: Vehicle Motion Control
  • 13.1. Vehicle Speed Control
  • 13.2. Path-Following Control.
  • 13.2.1. Cascade Control Design
  • 13.2.2 Inner-Loop Control via Front Steering and Rear Torque Vectoring
  • 13.2.3. Inner-Loop Control via Front and Rear Steering
  • References
  • Chapter 14: Vehicle Stability Control
  • 14.1. Yaw Stability Control
  • 14.1.1. Yaw Rate Target
  • 14.1.2. State Feedback Control
  • 14.1.3. Robust Yaw Stability Controller
  • 14.1.4. Practical Implementation of Control Inputs
  • 14.1.5. A Case Study of Lane Change Maneuver
  • 14.1.6. Yaw Stability Control in Autonomous Vehicle
  • 14.2. Rollover Control
  • 14.2.1. Rollover Analysis
  • 14.2.2. Roll Angle Estimation
  • 14.2.3. Rollover Control
  • 14.3. Stabilization Of Vehicle-Trailer System
  • 14.3.1. Trailer Stabilization Through Rear Steering
  • 14.3.2. Hitch Angle Estimation
  • 14.3.3. Simulation and Analysis of Trailer Stabilization
  • References
  • Appendix A: LabVIEW Implementations for Simulation
  • A.1. Labview Program Of Example 4.1
  • A.2. Labview Program Of Example 4.2
  • A.3. Labview Program Of Example 9.2
  • A.4. Labview Program Of Example 9.3
  • A.5. Labview Program Of Example 13.1
  • A.6. Labview Program To Figure 14.26
  • Bibliography
  • Index.