Yüklüyor…

Yüksek performanslı karbon/metal-oksit nanokompozit süperkapasitörlerin üretim ve karakterizasyonu /

Enerji ihtiyacımızın büyük bölümünü karşılayan fosil yakıt rezervleri hızla tükenmektedir. Bu durum alternatif enerji kaynakları kullanımına yönelik bilimsel çalışmaları hızlandırmıştır. Alternatif enerji kaynaklarının etkili şekilde kullanılabilmesi için sürdürülebilir ve çevre dostu enerji depolam...

Ful tanımlama

Detaylı Bibliyografya
Yazar: Sinan, Neriman
Müşterek Yazar: Fen Bilimleri Enstitüsü
Diğer Yazarlar: Yılmaz, Ünür Ece (Tez Danışmanı.)
Materyal Türü: Tez
Dil:Türkçe
Baskı/Yayın Bilgisi: Bursa, 2016.
Konular:
Online Erişim:http://acikerisim.btu.edu.tr/xmlui/handle/20.500.12885/98
Diğer Bilgiler
Özet:Enerji ihtiyacımızın büyük bölümünü karşılayan fosil yakıt rezervleri hızla tükenmektedir. Bu durum alternatif enerji kaynakları kullanımına yönelik bilimsel çalışmaları hızlandırmıştır. Alternatif enerji kaynaklarının etkili şekilde kullanılabilmesi için sürdürülebilir ve çevre dostu enerji depolama/dönüşüm sistemlerine gereksinim duyulmaktadır. Süperkapasitörler, yüksek güç ve enerji yoğunlukları ve uzun ömürleri ile alternatif enerji kaynaklarından değişken zamanlarda elde edilen yüksek yoğunluklu enerjinin çok hızlı bir şekilde depolanması için en iyi çözümü sunmaktadır. Süperkapasitörler enerji depolama mekanizmalarına göre ikiye ayrılır: elektriksel çift tabaka (EDL)- ve pseudo-kapasitörler. EDL-kapasitörlerde yüklerin elektrostatik olarak ayrışması söz konusudur ve geniş yüzey alanlı (1000-2000 m2 g-1) aktif karbonlar kullanılır. Pseudo-kapasitörlerde ise faradaik redoks tepkimeleri görülür ve redoks-aktif geçiş metal oksitleri kullanılmaktadır. Rutenyum oksit (RuO2) elektrot malzemesi olarak sıklıkla incelenmiş ancak yüksek maliyetli, toksik ve az bulunur olması nedeniyle alternatif pseudo-kapasitif malzemelerin geliştirilmesine ihtiyaç duyulmuştur. Nanokompozit elektrotlardan oluşan hibrit süperkapasitörler, aktif karbonun yüksek güç yoğunluğundan (hızlı şarj-deşarj) ve metal oksitlerin yüksek enerji yoğunluğundan aynı anda faydalanırlar. Bu çalışmada, karbon kaynağı olarak fındıkkabukları (biyokütle) kullanılmıştır. Kimyasal birlikte çöktürme metodu ile sentezlenen Fe3O4 nanopartikülleri tek adımda hidrotermal karbonizasyon ve seramik (MgO) şablonlama ile biyokütleye entegre edilerek gözenekli Fe3O4/C nanokompozit elektrotlar üretilmiştir. Fiziksel karakterizasyonların ardından elektrokimyasal performanslar üç-elektrotlu hücrede 1M Na2SO4 sulu çözeltisi içinde ve bu çözeltiye farklı konsantrasyonlarda Triton X-100 surfaktant katkılanarak incelenmiştir. En iyi spesifik kapasitans 0.0025M surfaktant katkılandığında elde edilmiştir (1 A g-1' da 161 F g-1, ΔV=1.2 V). Daha sonra simetrik süperkapasitör üretilmiş ve maksimum enerji yoğunluğu 4 Wh kg-1 olarak hesaplanmıştır (ΔV=1.8 V). Anahtar sözcükler: Biyokütle, Enerji Depolama, Hidrotermal Karbonizasyon
Fiziksel Özellikler:52 sayfa : renkli çizimler ; 29 cm.
Bibliyografya:Kaynakça : 44-51 sayfa.